博客
关于我
hdu 6835 Divisibility 数论
阅读量:355 次
发布时间:2019-03-04

本文共 812 字,大约阅读时间需要 2 分钟。

b进制数的整除性判断

问题陈述

在给定的b进制数y中,我们定义了一个函数f(y),该函数对y的每一位进行求和。现在,我们需要判断在给定b和x的情况下,以下结论是否成立:

如果某个数在十进制下能被x整除,则该数在b进制下也能被x整除。

思路解析

表达式展开

给定一个b进制数y,可以展开为以下形式:

y = c₁b^{n-1} + c₂b^{n-2} + ... + c_{n-1}b + c_n

其中,c₁到c_n分别代表各位数字,n为位数。

模运算性质

在模x运算中,我们有以下性质:

b ≡ 1 (mod x)

这意味着:

b ≡ 1 mod x

模运算结果

将上述表达式代入模x运算中:

y ≡ c₁ + c₂ + ... + c_n (mod x)

这表明y在模x下的余数等于各位数字之和。

代码实现

#include 
#include
using namespace std;int main() { int t; cin >> t; while (t--) { int b, x; cin >> b >> x; if (b % x == 1) { cout << "T\n"; } else { cout << "F\n"; } } return 0;}

代码解释

  • 输入处理:读取测试用例数t。
  • 循环处理:对于每个测试用例,读取b和x的值。
  • 条件判断:检查b是否满足b ≡ 1 mod x的条件。
  • 输出结果:根据条件判断,输出T或F。

结论

通过以上分析,我们可以得出结论:

如果b满足b ≡ 1 mod x,则b进制数y的各位数字之和在模x下等于y本身,从而能够被x整除。这一性质为b进制数的整除性判断提供了有效的方法。

转载地址:http://wair.baihongyu.com/

你可能感兴趣的文章
MySQL5.6的Linux安装shell脚本之二进制安装(一)
查看>>
MySQL5.6的zip包安装教程
查看>>
mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
查看>>
Webpack 基本环境搭建
查看>>
mysql5.7 安装版 表不能输入汉字解决方案
查看>>
MySQL5.7.18主从复制搭建(一主一从)
查看>>
MySQL5.7.19-win64安装启动
查看>>
mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
查看>>
MySQL5.7.37windows解压版的安装使用
查看>>
mysql5.7免费下载地址
查看>>
mysql5.7命令总结
查看>>
mysql5.7安装
查看>>
mysql5.7性能调优my.ini
查看>>
MySQL5.7新增Performance Schema表
查看>>
Mysql5.7深入学习 1.MySQL 5.7 中的新增功能
查看>>
Webpack 之 basic chunk graph
查看>>
Mysql5.7版本单机版my.cnf配置文件
查看>>
mysql5.7的安装和Navicat的安装
查看>>
mysql5.7示例数据库_Linux MySQL5.7多实例数据库配置
查看>>
Mysql8 数据库安装及主从配置 | Spring Cloud 2
查看>>