博客
关于我
hdu 6835 Divisibility 数论
阅读量:355 次
发布时间:2019-03-04

本文共 812 字,大约阅读时间需要 2 分钟。

b进制数的整除性判断

问题陈述

在给定的b进制数y中,我们定义了一个函数f(y),该函数对y的每一位进行求和。现在,我们需要判断在给定b和x的情况下,以下结论是否成立:

如果某个数在十进制下能被x整除,则该数在b进制下也能被x整除。

思路解析

表达式展开

给定一个b进制数y,可以展开为以下形式:

y = c₁b^{n-1} + c₂b^{n-2} + ... + c_{n-1}b + c_n

其中,c₁到c_n分别代表各位数字,n为位数。

模运算性质

在模x运算中,我们有以下性质:

b ≡ 1 (mod x)

这意味着:

b ≡ 1 mod x

模运算结果

将上述表达式代入模x运算中:

y ≡ c₁ + c₂ + ... + c_n (mod x)

这表明y在模x下的余数等于各位数字之和。

代码实现

#include 
#include
using namespace std;int main() { int t; cin >> t; while (t--) { int b, x; cin >> b >> x; if (b % x == 1) { cout << "T\n"; } else { cout << "F\n"; } } return 0;}

代码解释

  • 输入处理:读取测试用例数t。
  • 循环处理:对于每个测试用例,读取b和x的值。
  • 条件判断:检查b是否满足b ≡ 1 mod x的条件。
  • 输出结果:根据条件判断,输出T或F。

结论

通过以上分析,我们可以得出结论:

如果b满足b ≡ 1 mod x,则b进制数y的各位数字之和在模x下等于y本身,从而能够被x整除。这一性质为b进制数的整除性判断提供了有效的方法。

转载地址:http://wair.baihongyu.com/

你可能感兴趣的文章
Netty入门使用
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—7.Netty实现消息推送服务一
查看>>
Netty基础—8.Netty实现私有协议栈二
查看>>
Netty多线程 和 Redis6 多线程对比
查看>>
Netty学习总结(2)——Netty的高性能架构之道
查看>>
Netty学习总结(3)——Netty百万级推送服务
查看>>
Netty学习总结(5)——Netty之TCP粘包/拆包问题的解决之道
查看>>
Netty学习总结(6)——Netty使用注意事项
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0001---Netty介绍
查看>>
Netty工作笔记0003---IO模型-BIO-Java原生IO
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>